
Lecture-10

File Processing

Lubna Ahmed

1

Introduction

• Programs shown up to this point had involved relatively

small amount of input/output data.

• Input data were read from a terminal and output was

displayed in the terminal.

• This is adequate if the volume of data involved is not

large.

• Applications involving large data sets can be processed

more conveniently if the data is stored in files.

2

File Basics

• Computers have a standard structure for holding data

that can be accessed as a unit. This structure is called a

file.

• A file consists of many lines of related data that can be

accessed as a unit. Each line of information in a file is

called a record.

• Fortran can read information from a file or write

information to a file one record at a time.

3

Fortran Control Characters

I/O Statement Function

OPEN Associate a specific disk file with a specific

I/O unit number

CLOSE End the association of a specific disk file

with a specific I/O unit number

READ Read data from a specified I/O unit number

WRITE Write data to a specified I/O unit number

REWIND Move to the beginning of a file

BACKSPACE Move back one record in a file

4

Fortran Control Characters cont‟d

Opening and closing a file

Before you can use a file you have to open it. The

command is

OPEN (list-of-specifies)

where the most common specifies are:

UNIT= associate unit number

FILE = file name

ACCESS = data input mode

STATUS = file type Old or New

5

Fortran Control Characters cont‟d

When you are done with the file, it should be closed by

the statement

CLOSE (UNIT)

Read and write revisited

he only necessary change from our previous simplified

READ/WRITE statements, is that the unit number must

be specified.

READ(UNIT,*) variable to read data

WRITE(UNIT,*) data

6

Unit Specifier

The unit specifier has the following form:

UNIT = integer-expression

where the value of integer-expression is a non-negative

integer that designates the unit number to be connected

to this file. Reference to this file by subsequent READ

or WRITE statements is by means of this unit number.

7

FILE = Clause

The FILE = clause has the form:

FILE = character-expression

where the value of character-expression is the

name of the file to be connected to the specified

unit number.

8

STATUS = Clause

The STATUS = Clause has the form:

STATUS = character-expression

where the value of character-expression is one of the
following:

OLD

NEW

REPLACE

SCRATCH

9

STATUS = Clause cont‟d

• OLD means that the file already exists in the system.

• NEW means that the file does not yet exist and is being
created by the program

• REPLACE creates a fresh file and deletes any old file

of the same name.

• SCRATCH is used for a file that has not been given a

name, creating a “scratch” file for temporary use as the

program executes: a scratch file is deleted when the

program terminates or when a CLOSE statement

(below) is executed for the unit.

10

ERR = Clause

The ERR = clause has the form:

ERR = n

where n is the label of an executable statement that is

the next statement executed if an error occurs in

attempting to open the file.

11

IOSTAT = Clause

The IOSTAT = clause has the form:

IOSTAT = status-variable

where status-variable is an integer variable to which a

value of 0 is assigned if the file is open successfully.

12

Opening Files

Before a file can be used for input or output, it must
be opened by using an open statement of the form:

OPEN (open-list)

where open-list must include:

1. A unit specifier indicating a unit number to be
connected to the file

2. A FILE = clause giving the name of the file
being opened

3. A STATUS = clause specifying whether the file
is old or new

It may also include:

4. An IOSTAT = clause indicating whether the file
has been successfully opened

5. An ERR = clause specifying a statement to be
executed if an error occurs while attempting to
open the file

13

Closing Files

The CLOSE statement is of the form:

CLOSE (close-list)

where close list must include

1. A unit specifier

It may also include:

2. An IOSTAT = clause

3. An ERR = clause

4. A STATUS = clause specifying whether the file
is to be kept or deleted. It has the form

STATUS = character-expression

where value of the character-expression is

KEEP or DELETE

14

File Input

Data can be read from a file using a READ statement
of the general form:

READ (control-list) input-list

where control-list must include:

1. A unit specifier indicating the unit connected to
the file

It may also include one or more of the following:

2. A format specifier describing the format of the
information to be read

3. An END = clause specifying a statement to be
executed when the end of a file is reached

4. An ERR = clause specifying a statement to be
executed if an input error occurs.

5. An IOSTAT = clause to check the status of input
operation

15

File Output

Data are written to a file using a WRITE statement
of the general form

WRITE (control-list) output-list

The control-list must include:

1. A unit specifier indicating the unit number
connected to the file

It may also include one or more of the following:

2. A format specifier

3. An ERR = clause

4. An IOSTAT = clause

16

File Positioning Statement

• Ordinary Fortran files are sequential. However, we sometimes

need to read a piece of data more than once or to process a file

more than once during a program.

• Fortran provides two statements to help us move around within a

sequential file.

1. REWIND (position-list)

This statement restarts the file at its beginning. It has the form:

where unit is the I/O unit number associated with the

file that we want to work with

17

REWIND(UNIT= unit)

File Positioning Statement cont‟d

2. BACKSPACE (position-list)

This statement positions the file at the beginning of the

preceding record, i.e. this statement moves back one

record each time it is called.

where unit is the I/O unit number associated

with the file that we want to work with

18

BACKSPACE(UNIT= unit)

Case 1: Opening a file for input

The following statement opens a file named
EXAMPLE.DAT and attaches it to I/O unit 8.

19

Integer::ierror
OPEN (UNIT=8,

FILE=„EXAMPLE.DAT‟,STATUS=„OLD‟,ACTION=
„READ‟, IOSTAT=ierror)

Case 1: Opening a file for input cont‟d

• The STATUS=„OLD‟ clause specifies that the file
already exists;

• If it does not exist, then the OPEN statement will
return an error code in variable ierror.

• This statement illustrates the proper form of the
OPEN statement for an input file.

• The ACTION=„READ „ clause specifies that the file
should be read only.

• If an attempt is made to write to the file, an error will
occur. This behavior is appropriate for an input file.

20

Case 2: Opening a file for output

The following statement opens a file named OUTDAT
and attaches it to I/O unit 25.

21

Integer::unit, ierror
CHARACTER(len=6)::filename
unit=25
OPEN (UNIT=unit, FILE=filename,

STATUS=„NEW‟,ACTION= „WRITE‟,
IOSTAT=ierror)

Case 2: Opening a file for output cont‟d

• The STATUS=„NEW‟ clause specifies that the file is a
new file.

• If it already exists, then the OPEN statement will
return an error code in variable ierror.

• The ACTION=„WRITE‟ clause specifies that the file
should be write only.

• If an attempt is made to read from the file, an error will
occur. This behavior is appropriate for an output file.

22

Case 3: Opening a Scratch file

The following statement opens a scratch file and attaches it to I/O
unit 12.

• A scratch file is a temporary file that is created by the program
and that is deleted automatically when the file is closed or when
the program terminates.

• This type of file may be used for saving intermediate results
while a program is running.

• No file name is specified in the OPEN statement. In fact , it is an
error to specify a file name with a scratch file.

• The absence of ACTION = clause indicates that the file has been
opened for both reading and writing.

23

OPEN (UNIT=12, STATUS=„SCRATCH‟,
IOSTAT=ierror)

Thanks

24

Given a noisy set of measurements(x,y)that appear to fall along a

straight line, how can we find the equation of the line,

y=mx+b ……(1)

that best fits the measurement? If we can determine the regression

coefficients m and b, then we can use this equation to predict the

values of y at any given x by evaluating equation (1) for that value

of x. The slope of the least square line is given by

and the intercept is given by

Write a program that will calculate the least square slope and

intercept for a given set of noisy measured data points(x,y) that are

to be found in an input data file.

25

